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Sequence


Paradigm of Molecular Biology 

Function


High concentrations of myoglobin in 
muscle cells allow organisms to hold 
their breaths longer.     — Wikipedia 

Protein folding


Structure


myoglobin

•  Function is emergent.

•  The structure of the 
protein is key to its 
function. 

• Different structures = 
different functions




Conformational Change is Important … 

Ligand binding

(Drug discovery)


HIV protease!

ΔF

Protein folding

ΔF

Domain motion 

essential to expose 

to binding. 


myosin!

ΔF



Why are free energy  variations important.  

  They tell whether state A is favored over state B.


  For instance, is the configuration that has the drug molecule in 

it favored over the one that doesn’t (i.e. will this drug bind in the 

prescribed position at a given temperature)?  


  The key quantity that quantifies the relative odds is  


Ligand binding

(Drug discovery)


HIV protease!

exp −ΔE
kBT
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Conformational Free Energy 

� 

e−βF(X ) = dYe−βU (X,Y )∫
X: protein coordinates	
Y: water coordinates	
U(X,Y): potential energy function	
F(X): conformational free energy	

deca-alanine!

    = F(B) - F(A)	

Computations of F(X) don’t work.	

Compute    directly.	

ΔF

ΔF

β =
1
kBT



Why direct computations of the free energy do not work 

  Calculations of the free energy are enormously expensive. 

  We have to average out the water coordinates. 

  In a box, there are a few thousand water molecules, that is 
a few thousand water coordinates – and that is for a small 
protein !!!

  One must estimate nasty quadrature over a 1000 
dimensional space (for fixed X, the energy function has lots 
of minima). 

 This difficulty is known as the curse of dimensionality: The 
fact that in excessively large dimensions the sample density 
decreases exponentially.

 This is thus, a very hard problem 




Free Energy Perturbation --- computing the free energy 
difference 

State A	 State B	

Zwanzig (1954)


Bennett (1976):  bi-directional


Jarzynski (1997):  non-equilibrium


Transformation path


� 

e−βΔF = e−β [U (A,Y )−U (B,Y )]
A

MD simulation


Computational cost  =  days x hundreds


Ideal for massive parallelization




Computing free energy variations  

 I have just said that computing free energies is hard, so how is this 
possible? 

 The trick is to find a “good” path in the phase space.


  Then divide the path in small segments


  If the path is good, the free energy difference including its 
variance can be computed relatively easily by using some version of 
importance sampling

   So we have transformed the problem into the one of finding a 
good path in phase space. 




One such path: Direct Morphing 

� 

xn = (1− λ)an + λ bn
0 ≤ λ ≤1

3.6 ± 0.69	



Carnot cycle
A


B


Thermodynamic Cycle 

      depends only on the end states, not on the path.


Computer simulations are not bound by reality.


ΔF



Computing Free Energy Between 2 States,  

  We sample the distribution of states attached to each potential 
function – “conformation” – by using molecular dynamics.

  E.g., we start a molecular dynamics calculation with the potential 
function for fixed protein atoms, but moving water atoms, until the 
simulation “relaxes” and the system can be assumed ergodic. 

  With the samples we create a free energy estimate using Bennett’s 
acceptance ration method -- BAR




Bennet’s Acceptance Ratio Method 

• For the equation to be nonsingular, we need the second term 
in the sum to be significant – good overlap between ensembles.

•  Energy difference is small: good transformation path AND 
broken down in pieces.




Morphing for Dummies 

� 

xn = (1− λ)an + λ bσ (n )
0 ≤ λ ≤1

Need to find a good path!


Alchemy
 Alchemy




How to find a good path in phase space 
 But note that mapping the particles to the same 
ones from the linear structure may result sometimes 
in enormous traveled paths for some of them. 

 And we are not bound by having each element of 
the trajectory feasible in the sense of it 
corresponding to a real compound. Such paths are 
very hard to find. ( R. Elber, Curr. Opin. Struct. Biol. 
15, 151 2005).

 Therefore, we look for different perturbations 
which have a chance of resulting in smaller per unit 
energy variations. 

 What if we actually change the atoms themselves? 
This will allow us to make smaller steps in energy 
steps at the morphing step. 




Morphing for Dummies 

� 

xn = (1− λ)an + λ bσ (n )
0 ≤ λ ≤1

Minimize the distances !


Alchemy
 Alchemy




Least-Squares Morphing Problem 

� 

min
σ ∈ΠN

1
N

an − bσ (n )
2

n=1

N

∑

� 

ΠN = N -permutations{ }

� 

max
σ ∈ΠN

an ⋅bσ (n )
n=1

N

∑
� 

an − bσ (n )
2

n=1

N

∑ = an
2

n=1

N

∑ + bσ (n )
2

n=1

N

∑ −2 an ⋅bσ (n )
n=1

N

∑

� 

max
σ ∈ΠN

Tr AP(σ )BT[ ]
  

� 

Pij (σ ) =
1, j =σ (i)
0, otherwise
⎧ 
⎨ 
⎩ 

A = a1aN( ) B = b1bN( )



Linear-Programming Solution 

� 

P1:  max
P∈ΩN

Tr APBT[ ]
Original problem - Combinatorial search


� 

P2 :  max
W∈ΓN

Tr AWBT[ ]

� 

ΓN = N ×N bistochastic matrices{ }
Wij ≥ 0 Wiji∑ =1 Wijj∑ =1

Relaxed problem - Linear programming


� 

ΩN = N ×N permutation matrices{ }

Birkoff ’s theorem:


� 

ΩN = {Vertices of ΓN }

Fundamental theorem of LP:


� 

Solution of P2 ∈ {Vertices of ΓN }



Another way to look at it – it is a linear assignment 
problem! 

max wijj = 1

N
∑

i = 1

N
∑ ai ,bj

wijj = 1

N
∑ = 1, i = 1,2,…,N; wiji = 1

N
∑ = 1, j = 1,2,…,N

wij{ }i, j = 1,2…,N ∈FN ,wij ∈{0,1},i, j = 1,2,…,N

max wijj = 1

N
∑

i = 1

N
∑ ai ,bj

wijj = 1

N
∑ = 1, i = 1,2,…,N; wiji = 1

N
∑ = 1, j = 1,2,…,N

wij ≥ 0, i, j = 1,2,…,N

Define         A = aj
i{ }i=1, p; j=1,N

B = bj
i{ }i=1, p; j=1,N

It is a linear assignment 
problem !


But we had to identify 
this in the LS 
formulation!!




Least-Squares Permutation 

200 points




Least-Squares Morphing 

3.8 ± 0.44	



Direct vs. Least-Squares Morphing 

3.6 ± 0.69	

Direct
 Least-squares


RMS distance = 8.4 Å
 RMS distance = 2.1 Å


3.8 ± 0.44	



Discussion of the results.  

  Each one of the steps in the molecular dynamics simulation is 
done with NAMD. 

  NAMD is enormously expensive. One free energy perturbation 
step (FEP) takes 20 CPU hours for the deca-alanine. 

  In this case, dummying the atoms takes 10 FEP,  our least-
squares morphing takes 10 FEPs, and the un-dummying of the 
atoms takes another 10 FEPs.  Compare with 50 FEP steps for 
the original step. We save 600 CPU hours. (Morphing with LP 
takes 1-2 seconds).

 We solve 2 linear programming – linear assignment problems. 
There are better ways to do linear assignments, but, give the 
small computational cost, it is not worth to do  it. 

  But, more importantly, we can compute a more accurate path 
0.44 versus 0.69 kcal/mol.




About NAMD– Molecular Dynamics Software 

•  Why it is difficult: very expensive potential – CHARM 22.


• Simulations done at constant temperature, using the Langevin 
thermostat and Langevin-piston barostat.  

• Time step: 1fs, it is run for 1ns (1000 steps !), the trajectories 
sampled at 100fs are used as samples for estimating the integral.




Why computing a path of small error is not trivial 

  We note that getting a good path is still a matter of heuristics. 

  We are interested in the overall error, not just the asymptotic 

error estimate for one segment, which may have the usual Monte 
Carlo behavior. 


   Therefore it is not clear how the estimate behaves with more 
segments – therefore the cost of reducing the error for the 
original approach to the level we have obtained is hard to fathom.


  We have to some extend added a new capability to molecular 
dynamics.  




WW Domain 
Direct morphing


RMS distance = 11.3 Å	
100 FEP steps	
12.9 ± 3.2 kcal/mol	

Least-squares morphing


RMS distance = 3.4 Å	
50 + 30 FEP steps	
13.3 ± 1.1 kcal/mol	

To our knowledge, this is the first time the WW domain protein has 
been computed at all with this low of an error estimate. 




Conclusion 

  Morphing can result in much sharper estimates of free energy 
differences between different conformations. 

 We have shown that least-square morphing obtains an 
excellent free energy perturbation path. 

 We have shown that the path can be obtained in polynomial 
time, by using linear programming – linear assignment. 

 We have obtained 100s of CPU hour computational time 
savings,  with much more accurate FE difference estimates. 




What can applied math do for FEC ? 

Transformation path


Sampling algorithm


F
Free energy algorithm


Molecular dynamics 
Monte Carlo 

Physical intuition 
Optimization 

Free energy perturbation 
Thermodynamic integration 
Nonequilibrium methods 

Uncertainty estimation


Bayesian inference 


